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Figure 1. Our method, SAR3D, proposes a comprehensive framework for 3D generation and understanding via autoregressive modeling.
For (a) 3D generation, given a single image or text prompt, SAR3D generates multi-scale 3D objects in an autoregressive manner. For (b)
3D understanding, SAR3D-LLM can interpret a 3D model and provide a detailed description.

Abstract

Autoregressive models have demonstrated remarkable suc-
cess across various fields, from large language models
(LLMs) to large multimodal models (LMMs) and 2D content
generation, moving closer to artificial general intelligence
(AGI). Despite these advances, applying autoregressive ap-
proaches to 3D object generation and understanding re-
mains largely unexplored. This paper introduces Scale Au-
toRegressive 3D (SAR3D), a novel framework that lever-
ages a multi-scale 3D vector-quantized variational autoen-
coder (VQVAE) to tokenize 3D objects for efficient autore-
gressive generation and detailed understanding. By pre-
dicting the next scale in a multi-scale latent representation
instead of the next single token, SAR3D reduces genera-
tion time significantly, achieving fast 3D object generation
in just 0.82 seconds on an A6000 GPU. Additionally, given
the tokens enriched with hierarchical 3D-aware informa-
tion, we finetune a pretrained LLM on them, enabling multi-
modal comprehension of 3D content. Our experiments show
that SAR3D surpasses current 3D generation methods in
both speed and quality and allows LLMs to interpret and
caption 3D models comprehensively.

1. Introduction
Autoregressive models have achieved remarkable success in
various domains, including large language models (LLMs)
[1, 5, 14, 50, 72, 73], 2D generation [66, 71, 88], and large

multimodal models (LMMs) [2, 17, 67], marking signifi-
cant strides toward artificial general intelligence (AGI). By
predicting the next token [1] or scale [71], autoregressive
models are trained using a simple cross-entropy loss and
share similar architectures. This commonality allows them
to easily benefit from the optimizations the community has
developed over the years for LLMs. Nevertheless, there has
been limited exploration of how this next-token/scale pre-
diction approach can be applied to 3D object generation and
understanding.

Previously, the scarcity of 3D data pushed researchers
to rely on pretrained 2D diffusion models [58] as a prior
to generate 3D objects via multi-view score distillation
sampling (SDS) loss [52]. Following this, alternative ap-
proaches [27, 68] have focused on training feed-forward 3D
reconstruction models for fast 3D reconstruction, enabled
by large-scale 3D object datasets like Objaverse [15, 16].
These methods are capable of generating 3D assets in
mere seconds. More recently, native 3D generative mod-
els [29, 34, 48, 93] have emerged, attempting to sample 3D
assets from noise under various conditions (e.g., text or im-
age). However, as most of these models rely on diffusion-
based methods, they suffer from slow inference times. In
parallel, mesh-based generative models [11, 63] attempt to
generate 3D topology using autoregressive predictions, but
they are limited in detail and require slow, face-by-face pre-
dictions. For 3D understanding, some studies [19, 25, 85]
have attempted to finetune LLMs on 3D data to interpret the
3D world. However, these methods primarily use 3D point
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cloud representations, which are limited in capturing fine
object details.

In light of the immense potential of autoregressive next-
token prediction paradigm and their underexplored status
in 3D generation and understanding, we pose an impor-
tant question: Can autoregressive models be effectively ap-
plied to achieve both fast 3D object generation and de-
tailed understanding? Addressing this challenge requires
a 3D tokenizer capable of encapsulating detailed informa-
tion about 3D objects into compact tokens, as well as an
efficient schedule for autoregressive prediction.

In this work, we propose Scale AutoRegressive 3D
(SAR3D), a framework that leverages autoregressive mod-
els for both fast object generation and comprehensive un-
derstanding. Central to SAR3D is a multi-scale 3D vector-
quantized variational autoencoder (VQVAE) capable of tok-
enizing 3D objects into hierarchical levels of tokens. These
multi-scale tokens facilitate next-scale prediction training,
significantly reducing the steps required for 3D generation
compared to diffusion models and traditional next-token
prediction methods. Furthermore, the tokens, enriched with
3D-aware information, are naturally compatible with LLM
fine-tuning for detailed 3D understanding.

Specifically, our SAR3D introduces a multi-scale 3D
VQVAE to encode multiview RGB images, along with their
corresponding depth and camera parameters, into a multi-
scale latent triplane representation. For 3D generation, we
train an autoregressive model to predict the next scale of
this latent triplane based on previous scales, conditioned on
a single image or text prompt. By predicting the next scale
instead of the next single token, our approach significantly
reduces generation time, achieving 3D object generation in
only 0.82 seconds on an A6000 GPU. For 3D understand-
ing, we use truncated scale tokens from our 3D multi-scale
VQVAE to finetune a pretrained LLM, enabling it to pro-
cess multimodal inputs that combine text and 3D tokens.
Notably, our finetuned LLM can interpret 3D tokens en-
coded by our VQVAE as well as those generated by our
autoregressive model, supporting both 3D captioning and
simultaneous generation and understanding.

Experiments show that SAR3D surpasses existing 3D
generation methods in both speed and quality, and our VQ-
VAE enables LLMs to generate detailed captions for 3D ob-
jects . Our key technical contributions are as follows:

• We introduce SAR3D, a framework designed for both
fast 3D object generation and detailed 3D understanding.

• For 3D generation, our method utilizes a next-scale pre-
diction approach for both text-to-3D and single-image-to-
3D, achieving faster generation with higher quality com-
pared to existing methods.

• For 3D understanding, we leverage truncated scale tokens
generated by our 3D multi-scale VQVAE to finetune a
pretrained LLM, enabling it to interpret and describe 3D

models, and showcasing the potential of our approach in
multimodal applications.

2. Related Works
3D Generative Models. With the success of 2D dif-
fusion models [23, 65], their adaptation for 3D genera-
tion has been widely explored. Score distillation sam-
pling [10, 12, 52, 69, 77] leverages these 2D models to
distill 3D content, yet it encounters challenges such as
costly optimization, mode collapse, and the Janus prob-
lem. More recent approaches adopt a two-stage pipeline,
generating multi-view images first [42, 61, 62, 78] and
then reconstructing 3D structures through feed-forward pro-
cesses [26, 70, 84]. Although promising, these methods are
constrained by the quality of multi-view image generation,
which often lacks view consistency [41] and fails to scale to
higher resolutions [61]. Additionally, this two-stage setup
limits 3D editing capabilities due to the absence of a 3D-
aware latent space.

To overcome these limitations, native 3D diffusion mod-
els [34, 35, 37, 75, 91–93] have been introduced, offering
high-quality, efficient, and scalable 3D generation. Native
3D diffusion pipelines use a two-stage training process: first
encoding 3D objects into a VAE latent space [32, 33], fol-
lowed by applying a latent diffusion model on the result-
ing codes. However, diffusion-based 3D generation is slow
during inference, and its latent space cannot be easily ren-
ovated for 3D understanding. In parallel, mesh generative
models [11, 63] generates 3D topology through autoregres-
sive prediction. However, they lack details and require slow
per-face prediction. In this study, we show that our autore-
gressive SAR3D achieves efficient sampling, better quality,
and can naturally be used for 3D understanding by cascad-
ing a Large Language Model.
Autoregressive Visual Generation. Pioneered by Pixel-
CNN [59], researchers have proposed to generate images
as pixel sequences. Early research VQVAE [74] and VQ-
GAN [18] further quantize image patches into discrete to-
kens and employ a transformer to learn the autoregressive
priors, similar to language modeling [1]. The following
research further improves its sampling speed [8] and to-
kenization efficiency [89]. To further improve the recon-
struction quality, RQVAE [36] proposed multi-scale quan-
tization and VAR [71] transforms it into next-scale predic-
tion and significantly enhances the sampling speed. Par-
allel efforts are spent on scaling up autoregressive models
on text-conditioned visual generation task [38, 56, 66, 76].
In 3D area, though some preliminary works [47, 90] stud-
ied 3D autoregressive modeling on toy dataset [7] without
textures, the research on autoregressive 3D generation over
large scale 3D dataset [15, 16] is missing.
Large Multimodal Models. Inspired by the great suc-
cess of large language models (LLMs) [6, 72, 73], large



multimodal models (LMMs) are proposed to comprehend
and generate a wide range of information beyond text-
based data. Two prominent paradigms exist to train the
models in an end-to-end strategy: training the model from
scratch [45] or aligning pre-trained LLMs and unimodal en-
coders [2, 39]. The second strategy typically involves a
two-stage process: alignment of the unimodal encoder with
LLM’s feature space, and instruction-based fine-tuning.
Following up works also extend the LMMs to 3D under-
standing, specifically on point cloud [25, 53, 85, 86]. How-
ever, point clouds significantly ignore the details of the
given 3D inputs. Here, we demonstrate that our 3D VQVAE
can connect with an LLM for a detailed 3D understanding.

3. Preliminaries

3.1. Multi-scale Visual Autoregressive Generation

VAR [71] presents a multi-scale visual modeling method
for image generation, shifting from “next-token prediction”
to “next-scale prediction”, which significantly improves the
inference speed of autoregressive models. Given an en-
coded feature map f ∈ Rh×w×C of an input image I ,
VAR quantizes f into K multi-scale token maps R =
(r1, r2, ..., rK) at an increasingly higher resolution hk×wk,
with rK matches the resolution of the input feature map f .
The autoregressive likelihood reads as:

p(r1, r2, ..., rK) =

K∏
k=1

p(rk|r1, r2, ..., rk−1), (1)

where each autoregressive unit rk ∈ [V ]hk×wk is the token
map at scale k, and the sequence (r1, r2, ..., rk−1) serves
as the prefix for rk. To tokenize the input image I to
multi-scale discrete token maps R for the learning of next-
scale prediction, VAR proposes a multi-scale VQVAE with
a multi-scale quantizer Q(·):

f = E(I), R = Q(f), (2)

where I denotes the raw image and E is the image encoder.
This quantization process will map f to a sequence of multi-
scale token maps by looking up the nearest code [74] in
codebook Z ∈ RV×C :

z
(i,j)
k =

(
arg min

v∈[V ]

∥∥∥lookup(Z, v)− r
(i,j)
k

∥∥∥
2

)
∈ [V ],

(3)
where lookup(Z, v) means taking the v-th vector in code-
book Z. To train the quantized autoencoder, Z is looked up
by every zk(i, j) to get f̂ , the approximation of original f .
Then a new image Î is reconstructed using the decoder D(·)
given f̂ :

f̂ = lookup(Z, z), Î = D(f̂). (4)

Once fully trained, the autoencoder {E ,Q,D}will tokenize
the incoming images for training the unidirectional autore-
gressive model.

3.2. PointLLM for Point Cloud Understanding

Given multi-modal sentences containing both point clouds
P ∈ Rn×d and text, where n is the number of points and
d is the dimension of each point, PointLLM [85] aims to
perform 3D point cloud understanding by finetuning a pre-
trained large language model [13, 73]. It consists of three
main components: a pretrained point cloud encoder Γpe
(e.g., Point-BERT [90]), a projector Γproj and a pretrained
large language model backbone Γllm. The Γpe and Γproj

project P to a point cloud token sequence Zp ∈ Rm×c′ ,
where m is the total number of tokens and c′ is the projected
dimension of the point tokens. The final mixed sequence of
tokens Zm = (z1, z2, ..., zl) ∈ Rl×c consist of both point
tokens Zp and text tokens Zt:

Zp = Γproj(Γpe(P )), Zm = Concat(Zp, Zt), (5)

where Zt is obtained by tokenizer of Γllm, and Concat(·)
means concatenation of two vectors. The LLM back-
bone Γllm is a GPT-style Transformers [5], which ac-
cepts a sequence of previous multi-modal tokens Z<i =
(z1, . . . , zi−1) and predict the next token:

zi = Γllm(Z<i). (6)

The finetuning process has two stages. In the first stage, it
freezes {Γpe,Γllm} and finetunes Γproj to align point features
with the text token space. In the second stage, it freezes Γpe
and finetunes {Γllm,Γproj} together.

4. Method
In this section, we present SAR3D for high-quality 3D ob-
ject generation and detailed understanding. First, we intro-
duce a multi-scale 3D vector-quantized variational autoen-
coder (VQVAE) in Sec. 4.1, which tokenizes the input 3D
model into multi-scale tokens. Fig. 2 illustrates the design
of our 3D VQVAE. Next, in Sec. 4.2, with the whole se-
quence of different scales of the feature tokens, we train an
autoregressive model to perform the next scale prediction
given a single image or text prompt, which is only super-
vised by simple cross-entropy loss. Finally, in Sec. 4.3,
we explore using truncated scales of the whole sequence
to fine-tune a pretrained LLM [13, 72, 73] to handle mul-
timodal input sequence containing both 3D and text to-
kens, thereby enabling the understanding of the input 3D
model. Fig. 3 illustrates our 3D generation and understand-
ing pipeline. Different from other methods [80] that train
different encoders for generation and understanding, we
train a single VQVAE and use the whole and truncated se-
quence for generation and understanding, respectively. De-
tails of our SAR3D are shown below.
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Figure 2. Overview of Multi-scale VQVAE. Given a 3D model, we leverage multi-view RGB-D(epth) renderings and Plücker embeddings
as the input to our multi-view encoder E . The encoder predicts a continuous feature map that is then quantized by the multi-scale quantizer
Q, giving R = (r1, r2, . . . , rK) of latent tri-plane features. Each code of different scales share the same codebook. The triplane decoder
then converts the quantized latent triplane features into the triplane representation through a plane-wise manner. The predicted triplane is
multi-view supervised with the ground truth image, depth, and normal.

4.1. Multi-scale 3D VQVAE

As demonstrated by previous studies [4, 8, 34, 57], the key
to high-quality visual generation lies in a compact latent
space achieved by a specially designed variational autoen-
coder [32, 74]. To achieve both fast 3D generation and de-
tailed understanding, we propose a multi-scale 3D VQVAE
that maps a given 3D object into a discrete multi-scale latent
space. To encode a 3D model, we leverage its multi-view
posed RGB-D renderings as input. This approach offers a
comprehensive representation of the 3D structure and en-
ables compatibility with existing architectures [81].

Specifically, the input of VQVAE is a set of multi-view
renderings of the 3D object from 6 views. Each render-
ing M = (I,∆, π) captures essential 3D attributes, rep-
resenting the object from a specific viewpoint: the RGB
image I ∈ RH×W×3, the depth map ∆ ∈ RH×W , and
the corresponding camera pose π. To standardize these 3D
attributes, we transform the camera pose π into Plücker co-
ordinates [64], expressed as pi = (o × du,v,du,v) ∈ R6,
where oi ∈ R3 denotes the camera origin, du,v ∈ R3 is the
normalized ray direction, and × represents the cross prod-
uct. Consequently, the Plücker embedding of the camera π
is represented as P ∈ RH×W×6. The final representation
is formed by channel-wise concatenating these elements, re-
sulting in M̃ = [I⊕∆⊕P] ∈ RH×W×10, where⊕ denotes
concatenation.

To maintain both geometry and texture details of M ,
similar to LN3Diff [34], we encode the inputs through a
multi-view convolutional encoder [62, 70]. For better 3D
awareness, the latent space is designed to be a latent tri-
plane [34, 82] f ∈ R3×h×w×C . Besides, this representa-
tion also has spatial inductive bias and is compatible with
the scale and interpolation design in VAR [71]. After en-
coding, f is interpolated to different scales and quantized
using latent triplane quantization layer Q:

f = E(M̃), R = Q(f), (7)

where E is the encoder of our VQVAE and
R = (r1, r2, ..., rK) is the scale sequence and
rk ∈ R3×hk×wk×C , where each sub latent plane
rik ∈ Rhk×wk×C is independently quantized and in-
terpolated over the shared codebook Z. Please refer to the
Supp Mat for more quantization and interpolation details.

Afterward, the decoder D decodes discrete scales R to
triplane and render multiple views to calculate the recon-
struction loss. To balance training stability and mesh ex-
traction quality, we first train our model on volume render-
ing [46] with the loss reads as:

L = λrenderLrender + λVQLVQ + λGANLGAN, (8)

whereLrender combines mean absolute error (MAE) and per-
ceptual loss [94] between the rendered RGB-D images with
masks and ground truth, LVQ includes both encoding error
and commitment loss [74], and LGAN serves as the adver-
sarial loss to encourage a perceptually rich latent space. λ*
are the corresponding loss weights.

To facilitate 3D mesh extraction, we further finetune the
model to the hybrid representation Flexicubes [60, 84] with
the extra Lflex loss:

Lflex = λnormalLnormal + λregLreg, (9)

where Lnormal is MAE loss between rendered normal and
ground truth, Lreg is regularization term for Flexicubes pa-
rameters [60]. λ* are the corresponding loss weights. Simi-
lar to LATTE3D [83], we only fine-tune the decoder of the
VQVAE in this stage for stabilized training.

4.2. 3D Generation via Multi-scale Autoregressive
Modeling

SAR3D Transformer. We illustrate our generation frame-
work in Fig. 3. Similar to VAR [71], we use standard GPT-
style transformer [5] with AdaLN layer [51], with specific
layer design following the simple rule of scaling law [30].
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Figure 3. Overview of 3D Generation and 3D Understanding. Given a 3D model, our 3D VQVAE encodes it into multi-scale discrete
tokens for both 3D generation and understanding. In (a) 3D Generation, text or a single image is encoded by CLIPT or DINOv2, and the
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scale of the latent triplane. In (b) 3D Understanding, truncated 3D tokens are first processed with an MLP projector. The large language
model receives a multimodal sequence of text and 3D tokens and generates a detailed caption describing the input 3D model.

We adopt tri-plane latent for autoregressive prediction with
Eq. 1, where different latent plane rik is differentiated with
the corresponding learnable positional embeddings.
Conditional 3D Generation. Unlike feed-forward 3D re-
construction models [27, 70] that map input image into 3D,
we achieve flexible multimodal 3D generation by introduc-
ing diverse conditions, as shown in Fig. 3. For text con-
ditions, we use CLIPT [55] ViT-L text encoder and inject
the text embeddings into the autoregressive models through
cross attention. For the image-conditioned model, we use
DINOv2 [49] ViT-L to extract local patch features and
send them into the autoregressive model through pre-cross-
attention block [27], which empirically yields better perfor-
mance. Besides local patch features, we also leverage the
pooled out feature of CLIPT/DINOv2 as the start token of
the sequence. Please refer to the Supp Mat for more details
of our transformer blocks.
Classifier-free Guidance. As first proposed in diffusion
models [23, 57], classifier-free guidance [22] (CFG) has
shown effectiveness for improving generation quality and
condition alignment. Therefore, we also enable CFG in our
model by randomly dropping out 10% of the input condition
by replacing it with a null unconditional embedding [51].
During inference, the logit rg of each token is calculated
by rg = ru + s(rc − ru), given the conditional logit rc
and the unconditional logit ru. s stands for the scale of the
classifier-free guidance.

4.3. SAR3D-LLM for 3D Object Understanding

Since our 3D VQVAE model provides a comprehensive en-
coding of the given 3D object, it can be naturally extended
to 3D object understanding. Following PointLLM [85], we
align the latent space of our pre-trained 3D VQVAE to a
large language model, e.g., LLaMA [72, 73]. As briefed in

Sec. 3.2, the encoded 3D tokens R are projected to the lan-
guage latent space, and concatenated with the text instruc-
tion tokens Zt. Here, we directly use the output tokens from
pre-trained SAR3D VQVAE to the projector Γproj. Since
we only study the 3D captioning [43] task here, the instruc-
tion tokens Zt is fixed to Z̃t which are tokenized from “Give
a concise interpretation of the 3D data presented here”.
The final framework, SAR3D-LLM, supports both detailed
3D captioning given 3D object and simultaneous 3D gener-
ation and captioning given text or image.

Moreover, a surprising observation here is that not all
scales in R are required for 3D understanding training. Em-
pirically, we use the truncated scale latent codes R̃ =
(r1, r2, ..., rK−2) as the input to the LLM, which contains
only 37.5% of the overall tokens required for training 3D
generation. The final multimodal tokens Zm that serve as
the input to the LLM reads as

Zproj = Γproj(R̃), Zm = Concat(Zproj , Z̃t), (10)

where Zproj is the projected 3D tokens, and Concat(·, ·)
means concatenation. A similar observation is also men-
tioned in Janus [80], where different features are required
for multimodal understanding and generation. Furthermore,
unlike other 3D captioning approaches such as Cap3D [43,
44], which separately extracts captions from 8 multi-view
renderings and require post-processing to merge them into
a unified caption, our method efficiently generates a detailed
caption with a single encoding step.

5. Experiments
Datasets. To train our model, we use renderings from
G-Objaverse [16, 54] and select a high-quality subset of
around 176K 3D instances, where each consists of 40 ran-



Table 1. Quantitative Evaluation of Image-conditioned 3D Generation. We evaluate the quality of both 2D rendering and 3D shapes.
As shown below, the proposed method demonstrates strong performance across all metrics. Although LGM, a multi-view images-to-3D
approach, achieves slightly better performance on FID, it falls short on more advanced image quality assessment metrics such as MUSIQ
and has significantly worse 3D shape quality. For multi-view to 3D methods, we also include the number of input views (V=#). The
latency time is all profiled on Tesla V100 architecture.

Method FID↓ KID(%)↓ MUSIQ↑ COV(%)↑ MMD(‰)↓ Latency-V100 (s) ↓
Splatter-Image 48.80 3.65 30.33 37.66 30.69 0.83
OpenLRM 38.41 1.87 45.46 39.33 29.08 7.21

One-2-3-45 (V=12) 88.39 6.34 59.02 33.33 35.09 59.23
Lara (V=4) 43.74 1.95 39.37 39.33 28.84 11.93
CRM (V=6) 45.53 1.93 64.10 38.83 28.91 22.10
LGM (V=4) 19.93 0.55 54.78 50.83 22.06 3.87

Shap-E 138.53 11.95 31.51 61.33 19.17 9.54
LN3Diff 29.08 0.89 50.39 55.17 19.94 7.51
SAR3D-NeRF 22.55 0.42 67.24 71.50 15.24 1.64
SAR3D-Flexicubes 27.30 0.63 65.17 59.50 15.48 2.92

Input Ours OpenLRM LGM LN3Diff

Figure 4. Qualitative Comparison of Image-conditioned 3D Generation. Here, we compare with the state-of-the-art 3D generative
models under different categories. As visualized here, our method achieves superior 3D consistency across views and generates intact
objects without distortion. For more comparisons with other methods, please refer to the Supp Mat.

dom views with RGB, normal, depth maps and camera
poses. For text-conditioned generation and 3D understand-
ing training, we use captions provided by 3DTopia [24]. For
image-conditioned training, we select a random view of the
corresponding 3D instance as the condition.
Implementation Details. In our multi-scale VQVAE, we
use images with a resolution of H = W = 256 as in-
put. The feature map is quantized across 10 scales, with
sizes of 3 × (12, 22, 32, 42, 52, 62, 82, 102, 132, 162). To
enhance codebook utilization and stabilize 3D generation
training, we follow [66, 87] by applying ℓ2-normalization
to codebook vectors, setting a low codebook vector dimen-
sion C = 8, and using a large codebook size V = 16384.

For 3D generation, we base our architecture on
VAR [71], adding plane positional encoding for each plane.
For text-conditioned generation, the model has 16 trans-

former blocks with 16 heads, while for image-conditioned
generation, it has 24 transformer blocks with 16 heads. We
use the AdamW optimizer with a learning rate of 10−4.
For 3D understanding, we utilize the Vicuna-7B [13] check-
point of LLaMA [73], following PointLLM [85]. The train-
ing was conducted on 7 NVIDIA A100 GPUs for the multi-
scale VQVAE with batch size 28, image-conditioned trans-
former with batch 63, text-conditioned transformer with
batch size 52. For SAR3D-LLM, the stage-1 alignment is
trained with batch size 140, and stage-2 with 112.

5.1. Single Image to 3D

We compare our SAR3D with three categories of meth-
ods: single-image to 3D methods (Splatter-Image [68],
OpenLRM [20, 26]), multi-view image to 3D methods
(One-2-3-45 [40], Lara [9], CRM [79], LGM [70]),
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Figure 6. Comparison of Text-conditioned 3D Generation. We present text-conditioned 3D objects generated by SAR3D, displaying
two views of each sample.Compared to baseline methods, our approach consistently yields better quality regarding geometry, texture, and
text-3D alignment.

and native 3D diffusion models (Shap-E [29], LN3Diff-
image [34]). Quantitatively, we benchmark rendering met-
rics with FID [21], KID [3], and MUSIQ [31, 95]. For
3D quality evaluation, we report Coverage Score (COV),
and Minimum Matching Distance (MMD) score, as shown
in Table 1. Our SAR3D demonstrates strong performance
across all metrics.

Furthermore, we also profile the generation speed. This
timing covers the complete process, from input image pro-
cessing to mesh extraction. Thanks to efficient next-scale
prediction, SAR3D achieves exceptionally fast generation
speeds, achieving 0.82 seconds and 1.46 seconds respec-
tively on a single A6000 GPU. Since other baseline meth-
ods are tested on Tesla V100 GPUs, we scale our results by
a factor of 2 for fair comparison in Table 1.

The qualitative comparisons between SAR3D and exist-
ing methods is also included in Fig. 4. Compared to single-
image to 3D methods like OpenLRM[20], and multi-view
image to 3D methods like LGM [70], our approach achieves
better 3D consistency across views and reduces distortion
in generated 3D objects. Compared to native 3D diffusion
models like LN3Diff [34], SAR3D produces more com-
plete 3D models. Additional qualitative results are shown
in Fig. 5. For more comparisons with other methods, please
refer to the Supp Mat.

5.2. Text to 3D

In addition to image-to-3D generation, SAR3D also sup-
ports the creation of high-quality 3D assets from text
prompts. As shown in Fig. 5, SAR3D generates diverse
and detailed 3D objects based on the same text input. For
instance, in the first and second samples, SAR3D pro-
duces different shapes for the cannon barrel and chair base,
while in the third sample, it varies the texture of a wooden
chest. In Fig. 6, we compare our method with other text-to-
3D generation approaches, including Point-E [48], Shap-
E [29], 3DTopia [24], and LN3Diff [34]. Compared to
these baselines, SAR3D achieves sharper visual results and
better alignment with the input prompts. For example,
in the second sample, SAR3D generates red patterns on
the handle, closely matching the input text.. In contrast,
Point-E [48] reverses the colors of the handle and blade,
3DTopia [24] produces a completely red sword, and Shap-
E [29] yields a less detailed result.

5.3. 3D Captioning

3D Object Captioning. In this section, we present the
results of our 3D understanding model applied to various
3D models. As shown in Fig. 8, given the prompt “Give
a concise interpretation of the 3D data presented here.”,
SAR3D-LLM can generate both the correct category and
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A red and white 

cylindrical fire 

extinguisher with a 

handle on top and a 

nozzle at the top.

A blue, curved sword with a 

long and slender blade, 

featuring a hilt or handle at 

the base. It has a metallic 

sheen and is associated with 

the protagonist, Link, in The 

Legend of Zelda video game 

franchise.

“Bookshelf”

a white shelving unit in 

the shape of a building.

“Desk Lamp”

A vintage industrial lamp

with a metal base, tall 

slender stem, and a 

cylindrical shade. It has a 

rustic and antique look, with 

a combination of metallic 

and wooden elements.

“Small red and white 
spotted mushroom”

A mushroom with a red cap 

and white stem, depicted as 

a red and white spotted

mushroom.

A unique, intricately 

designed wooden box

with a colorful, hand-

painted decoration and 

a rectangular shape.

Figure 7. Simultaneous 3D Generation and Captioning. Given a single image or text, SAR3D-LLM can generate both a 3D model and
a descriptive caption for the model.

A sleek and modern blue 

and white chair with a 

curved backrest, 

designed for comfort and 

support. It features a 

black base and a 

cushioned seat.

3D
Model

Ours

GT Eames Lounge Chair

A sleek and aerodynamic 

blue and white racing car 

with a futuristic design, 

featuring racing stripes, a 

spoiler on the back, and a 

low profile.

Lego model of a blue 

and purple sports car 

with wheels.

A small, wooden 

house with a 

rectangular shape, 

staircase leading up 

to the entrance, and a 

patio area in front.

a small house with 

stairs, a balcony, and 

a wooden floor.

Figure 8. 3D Object Captioning. Given a 3D model, SAR3D-
LLM can generate captions that include both category and details.

fine details of the input 3D models. For example, in the
chair case, SAR3D accurately describes the shape (curved
backrest), colors (blue and white), and components (black
base, cushioned seat), whereas the ground truth text lacks
these details. Furthermore, our 3D tokens enable the LLM
to capture the spatial relationships between different parts
of the model. For instance, in the third column of Fig. 8,
SAR3D uses phrases like “leading up to” and “in front of”
to describe the spatial relationship between the staircase,
entrance, and patio area, while the ground truth label merely
lists these parts without capturing their spatial connections.
Simultaneous 3D Generation and Captioning. In addi-
tion to interpreting tokens encoded by our 3D VQVAE,
SAR3D can also process 3D tokens generated by our au-
toregressive model to enable simultaneous 3D generation
and captioning, as illustrated in Fig. 7. Given the con-
dition input image or text, SAR3D not only generates
the entire object but also detailed captions based on trun-
cated scales of the generated 3D tokens. Notably, in text-
conditioned generation and understanding, SAR3D gener-
ates additional details beyond those specified in the input
text, resulting in accurate and comprehensive descriptions

of the generated content.

6. Limitations
The first limitation is that, while SAR3D can generate high-
quality 3D objects and detailed interpretations, it currently
relies on two separate autoregressive models. Future work
could focus on developing a truly multimodal model [80]
capable of processing tokens that integrate both text and 3D
information, producing both 3D and text outputs. Besides,
the quality of the geometry and texture is limited by vol-
ume rendering. Using more efficient 3D representions [28]
or cascaded generation [93] will further boost the overall
quality. Finally, although our method demonstrates inher-
ent scalability, its scaling behavior has not been thoroughly
validated here due to limited resources. We believe that with
more resources, our method has the potential to demonstrate
favorable scaling laws in 3D generation and understanding.

7. Conclusion
In this work, we presented SAR3D, a novel framework that
advances both fast 3D object generation and comprehen-
sive 3D understanding through a multi-scale VQVAE and
autoregressive modeling. By introducing a latent tri-plane
next-scale prediction approach, we addressed the speed lim-
itations of existing diffusion-based 3D generation methods,
achieving sub-second generation times with high-quality re-
sults. Furthermore, our multi-scale VQVAE enables a pre-
trained LLM to process and interpret multimodal inputs by
leveraging truncated scale 3D tokens, demonstrating the
capability of LLMs for detailed 3D object captioning as
well as simultaneous 3D generation and captioning. Ex-
perimental results underscore SAR3D’s efficiency and ef-
fectiveness in 3D generation and understanding tasks, po-
sitioning it as a versatile tool for multimodal AI applica-
tions. Future research may further explore scalability and
extend SAR3D’s application to broader 3D content and
multimodal understanding challenges.
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A. Multi-scale quantization and interpolation
Similar to VAR [71], we employ quantization and interpola-
tion in a residual design on the latent tri-plane feature map,
as described in Algorithm 1 and Algorithm 2. In particular,
they demonstrate that all scales share the same codebook,
and each plane of the latent tri-plane is quantized indepen-
dently based on the corresponding plane’s previous scales.
To upsample zik to the resolution of hK × wK , we utilize
convolutional layers ϕi

k(·). For interpolating zik to resolu-
tion hK × wK , we don’t use any network.

Algorithm 1 Multi-scale 3D VQVAE Encoding

Require: multiview renderings M̃
Require: steps K, resolutions (3, hk, wk)

K
k=1

1: f ← E(M̃), R← [];
2: for k = 1, . . . ,K do
3: for i = 1, . . . , 3 do
4: rik ← Q(interpolate(f, hk, wk))
5: R← queue push(R, rik)
6: zik ← lookup(Z, rik)
7: zik ← interpolate(zik, hK , wK)
8: f i ← f i − ϕi

k(z
i
k)

9: end for
10: end for
11: return multi-scale latent tri-plane tokens R

B. Transformer blocks
The architecture of our transformer block for 3D generation
is illustrated in Fig. S1. We utilize the CLIP text encoder or
the DINOv2 image encoder to process text and image em-
beddings, respectively. The pooled tokens are then passed
through an MLP to compute the scale and shift parameters
for the multi-head self-attention and feedforward network
(FFN) modules. Additionally, the feature vectors are incor-
porated into multi-head cross-attention blocks to facilitate
cross-modal attention. To enhance the integration of cross-
modal information into the model, similar to [35], we mod-

Algorithm 2 Multi-scale 3D VQVAE Reconstruction

Require: multi-scale latent tri-plane token maps R
Require: steps K, resolutions (3, hk, wk)

K
k=1

1: f̂ ← 0
2: for k = 1, . . . ,K do
3: for i = 1, . . . , 3 do
4: rik ← queue pop(R)
5: zik ← lookup(Z, rik)
6: zik ← interpolate(zik, hK , wK)

7: f̂ i ← f̂ i + ϕi
k(zk)

8: end for
9: end for

10: T̂ ← D(f̂)
11: return reconstructed triplane representation T̂

ify the structure of the transformer blocks by rearranging
the order of self-attention and cross-attention in the text-
conditioned and image-conditioned transformer blocks.

C. More 3D captioning results
Additional 3D captioning results are presented in Fig. S2.
Given a 3D model, our SAR3D-LLM is capable of gen-
erating detailed captions. For instance, in the case of the
skateboard ramp, our method can describe specific details
about its shape, such as curved, flat top, sloping bottom, as
well as its functionality, like performing tricks and jumps.

D. More image-to-3D comparison
As illustrated in Fig. S3, we show more reults to compare
our SAR3D with three categories of methods: single-image
to 3D methods (Splatter-Image [68], OpenLRM [20, 26]),
multi-view image to 3D methods (One-2-3-45 [40], Lara [9],
CRM [79], LGM [70]), and native 3D diffusion models
(Shap-E [29], LN3Diff-image [34]). Compared to baseline
methods, our SAR3D generates intact, distortion-free re-
sults and delivers high-quality visual effects in both refer-
ence and novel views.

https://cyw-3d.github.io/projects/SAR3D/
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Figure S1. Transformer Blocks in Our 3D Generation Transformer. The CLIP text encoder (CLIPT ) or the DINOv2 image encoder
processes text and image embeddings, respectively. The pooled tokens are passed through an MLP to compute the scale and shift parameters
for the multi-head self-attention and feedforward network (FFN) modules. Additionally, feature vectors are incorporated into multi-head
cross-attention blocks to enable cross-modal attention.



A wooden desk and chair set with 

a rectangular shape, featuring a 

simple and minimalistic design. 

The desk has a wooden top with a 

metal base, while the chair has a 

wooden seat and backrest.

A rectangular wooden table 

with a white cloth covering, 

suitable for dining or social 

gatherings, featuring a natural 

and elegant appearance.

A unique pair of black 

and green sunglasses 

with a slim and curved 

frame, featuring green 

lenses and a distinctive 

design.

A red and white rectangular box 

with a gray lid, likely made of 

plastic or metal, with a sleek and 

modern design. It may have a 

hinged lid and is sturdy and 

durable.

A realistic and detailed red 

acoustic guitar with a distinct 

shape, long neck, and body, played 

by strumming or plucking the 

strings with fingers or a pick.

A detailed and realistic 3D object 

resembling a bat, with a long 

pointed nose, two large wings, a 

body, and a head, positioned in a 

flying pose.

A wooden half-pipe skateboard 

ramp with a curved shape, flat 

top, and sloping bottom, 

designed for skateboarders to 

perform tricks and jumps.

A unique and visually 

appealing wooden staircase 

with a curved design and a 

landing at the top and bottom.

A sleek and modern black 

knife with a sharp silver 

blade, suitable for cutting 

and slicing purposes.

low-poly model of a green 

pine tree, also resembling a 

Christmas tree

A large, rusty brown 

cylindrical metal container 

with a rough, textured surface 

and a tapered top.

A pixelated Minecraft 

character with a red hat, 

blocky appearance, and a 

slightly wider base, standing 

and leaning forward.

Figure S2. Additional 3D Captioning Results. Our method generates detailed descriptions based on the input of 8 scales of latent tri-plane
tokens.



CRM

LGM

Lara

OpenLRM

Splatter-
Image

LN3Diff

Shap-E

Ours

Input

One-2-
3-45

Figure S3. More Comparisons of Image-to-3D Generation. Our method consistently produces higher-quality 3D objects without
distortion from a single image, excelling in both reference and novel views.
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