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Abstract. Generating high-quality 3D assets from a given image is
highly desirable in various applications such as AR/VR. Recent advances
in single-image 3D generation explore feed-forward models that learn to
infer the 3D model of an object without optimization. Though promis-
ing results have been achieved in single object generation, these methods
often struggle to model complex 3D assets that inherently contain mul-
tiple objects. In this work, we present ComboVerse, a 3D generation
framework that produces high-quality 3D assets with complex compo-
sitions by learning to combine multiple models. 1) We first perform an
in-depth analysis of this “multi-object gap” from both model and data
perspectives. 2) Next, with reconstructed 3D models of different objects,
we seek to adjust their sizes, rotation angles, and locations to create a
3D asset that matches the given image. 3) To automate this process, we
apply spatially-aware score distillation sampling (SSDS) from pretrained
diffusion models to guide the positioning of objects. Our proposed frame-
work emphasizes spatial alignment of objects, compared with standard
score distillation sampling, and thus achieves more accurate results. Ex-
tensive experiments validate ComboVerse achieves clear improvements
over existing methods in generating compositional 3D assets.

1 Introduction

Learning to create high-quality 3D assets from a single image is a long-standing
goal in computer graphics and vision research, given its potential applications
in AR/VR, movies, games, and industrial design. Over the years, a plethora
of attempts have been made to leverage diffusion models [15] for 3D content
creation.

Previously, limited 3D data availability led researchers to rely on pretrained
2D diffusion models for 3D guidance, with a score distillation sampling (SDS)
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Reference Compositional generation Reference

Fig. 1: ComboVerse can generate high-quality 3D models from a single image that
contains multiple objects, e.g., a squirrel sitting on a paper box. We show textured
meshes of created 3D content, showcasing stunning reconstruction quality.

loss [38] transferring 3D-aware knowledge. More recently, alternative approaches
focus on training feed-forward 3D diffusion models for fast generation, facilitated
by large-scale 3D object datasets like Objaverse [7]. Once trained, these models
can produce signed distance field [5], points [34], radiance fields [18,53], mesh [29],
or multi-view images [27] through a single forward inference within one minute.

Despite compelling results on simple object generation, these feed-forward
methods usually encounter difficulties when applied to more complex data, such
as scenes with multiple objects and complex occlusion. Fig. 2 illustrates the
drawbacks of existing models when dealing with such combining objects. How-
ever, upon generating each object separately, we observed that these models
performed well. We perform an in-depth analysis of this “multi-object gap” and
conjecture that this gap comes from the bias of their training data, i.e., Obja-
verse. The scarcity of 3D assets containing multiple objects makes it challenging
for trained models to manage composites beyond the training data distribution.

Given the observations made above, is it possible to design a generative
system that can produce 3D content containing multiple objects? Typically,
skilled human artists create each object separately before integrating them into
a whole. This has motivated us to present a compositional generation paradigm
termed ComboVerse, which generates each object individually and then focuses
on automatically combining them to create a composite. A key advantage of our
proposed paradigm is its ability to effectively manage complex assets containing
multiple objects and occlusion.

Our approach comprises two stages: single-object reconstruction and multi-
object combination. We first decompose and reconstruct each object within an
image independently, using an occlusion removal module and an image-to-3D
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model. In the second stage, we aim to automatically combine the generated 3D
objects into a single model, accounting for various factors such as object scale,
placement, and occlusion. However, this process poses a challenge due to depth-
size ambiguity in the input image, leading to inaccurate composition.

To address this issue, we opt for pre-trained diffusion models as spatial guid-
ance for object positioning. Unlike previous SDS-based methods [4, 25, 38, 48]
that require optimizing both the shape and texture from scratch, we fix the 3D
model of individual objects and focus only on achieving a reasonable spatial
layout so that the optimization process would be much faster. However, we have
found that the standard SDS is insufficient for accurately placing objects, as
it tends to prioritize content over position to match the given text prompt (see
Fig. 5). To address this issue, we introduce a spatially-aware SDS loss that places
greater emphasis on the spatial relationships between objects. Specifically, we
reweight [14] the attention map of the position tokens that indicate the spatial
relation for score distillation. By prioritizing the awareness of position, the pro-
posed loss can effectively distill the spatial knowledge from well-trained diffusion
models for object placement.

To evaluate our method, we collect a benchmark consisting of 100 images that
comprise a diverse range of complex scenes. We evaluate ComboVerse on this
benchmark, and extensive experiments show clear improvements over previous
methods in terms of handling multiple objects, occlusion, and camera settings.
Our main contributions can be summarized as:

– We propose ComboVerse, an automatic pipeline that extends object-level 3D
generative models to generate compositional 3D assets from an image.

– We perform an in-depth analysis of the “multi-object gap” of existing feed-
forward models from both model and data perspectives.

– We propose spatially-aware diffusion guidance, enabling pre-trained image
diffusion models to provide guidance on spatial layout for object placement.

2 Related works

3D Generation with 2D Diffusion Prior. Many methods opt to pretrained
2D diffusion models [15, 43] as a source of 3D guidance. Early works [38] pro-
posed a score distillation sampling method to leverage the imaginative power
of 2D diffusion for text-conditioned 3D content creation. Later works have im-
proved the quality by using two-stage optimization [4, 25, 32], better score dis-
tillation [55], and stronger foundation diffusion models [24,45]. Other works [31,
39,48,52,56,60] extend the approach to generate 3D models from a single image.
Some works [47, 61] replace implicit representation with 3D gaussian splatting.
Although the results are promising, creating a 3D model in this way can take
several minutes to hours of optimization.
Feed-forward 3D Generative Models. Another line of approaches trained
feed-forward models for fast generation, eliminating the need for per-case opti-
mization. 3D-aware generative adversarial networks [1,2,11,35,36,59] have gained
considerable research interest in early research. Later, many attempts have been
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made to leverage diffusion models for image-conditioned and text-conditioned 3D
generation. Once trained, they can produce signed distance field [5,6], points [34],
radiance fields [12,16,18,21,53], gaussian splattings [22,62], mesh [29], or multi-
view images [26–28,30,49] without optimization. Besides diffusion models, recent
works also explore feed-forward 3D reconstruction with transformer architec-
ture [17, 23] or UNet architecture [46]. Despite fast generation, these methods
are limited by the training data, restricting their ability to reconstruct complex
3D assets. We aim to build on these object-level generative models and extend
them to handle more complex objects or scenes.
Compositional 3D Generation. Previous studies [35] have investigated the
use of compositional neural radiance fields in an adversarial learning framework
for the purpose of 3D-aware image generation. Additional studies have explored
the concept of part-based shape generation, which involves assembling 3D parts
into a 3D model. The seminal work [9] retrieves from a mesh database to find
parts of interest and composite the cut parts to produce novel objects. Later, the
following works involve probabilistic models for part suggestion [19], semantic
attribute [3], fabrication [44], and CAD assembly [57]. With pretrained diffu-
sion models as guidance, recent work [37] generates compositional 3D scenes
with user-annotated 3D bounding boxes and text prompts. Concurrent works
generate 3D scenes from text prompts by using large language models (LLMs)
to propose 3D layouts as an alternative for human annotations [10, 50, 54], or
jointly learning layout during optimization process [8]. These approaches can
produce 3D scenes that match the text prompts, but texts can be unclear and
imprecise when describing how objects are arranged in space. In contrast, our
approach focuses on reconstructing complex 3D assets from a reference image.
Unlike text descriptions, images represent the spatial relations among objects
more accurately, requiring higher standards of composition quality.

3 ComboVerse

In this section, we will first analyze the “multi-object gap” of state-of-the-art
image-to-3D generation methods trained on Objaverse, followed by a discussion
of our compositional generative scheme. We then present the details of the two
stages involved in our approach: single-object reconstruction and multi-object
combination. The overview architecture is shown in Fig. 3.

3.1 Analysis of “Multi-Object Gap”

Most existing feed-forward models are trained on Objaverse [7]. As shown in
Fig. 2 (also see Supp.), these methods suffer three typical failure cases for multiple
objects generation due to data and model biases.
Camera Setting Bias. When setting up cameras, most image-to-3D methods
assume that the object has a normalized size and is centered in the image. How-
ever, in scenarios with multiple objects, an object could appear in a corner or be
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Fig. 2: “Multi-object gap” of models trained on Objaverse. (a) Camera Setting
Bias. The reconstruction quality for small and non-centered objects will significantly
downgrade compared to separate reconstruction. (b) Occlusion. The reconstruction
results tend to blend when an object is occluded by another. (c) Leaking Pattern. The
shape and texture of an object will be influenced by other objects in the input image.
For example, in (c), the tiger’s back face adopts the owl’s color, and its back surface
becomes convex instead of concave due to the owl’s shape influence.

very small in the image, which does not conform to object-centric assumptions.
Such a case can result in a significant decline in modeling quality.
Dataset Bias. The Objaverse dataset predominantly features single-object as-
sets, which poses a challenge for models trained on it to generalize to complex
composites. Additionally, the near absence of occlusion in Objaverse results in
these models struggling to handle occluded objects. As a result, generated ob-
jects often blend together due to occlusion ambiguity.
Leaking Pattern. Existing methods tend to exhibit leakage issues when gener-
ating multiple objects simultaneously, where the geometry and appearance of one
object can affect another. This issue may stem from the model’s biases, as it is
trained to generate a single object where different parts are consistent. However,
in scenes with multiple objects, different objects may have different geometry
and texture. If they still affect each other, it can lead to bleeding patterns.
Motivation. As shown in Fig. 2, though the current methods have difficulties
in generating compositional objects, we have observed that these methods are
successful in reconstructing each component object. This observation suggests
the possibility of generating each object separately (Sec. 3.2) and subsequently
combining them to form the desired compositional object (Sec. 3.3).

3.2 Single-Object Reconstruction

Components Decomposition. Given an input image I, we first specify each
object’s 2D bounding box {bi ∈ Z4}, indicating the coordinates of the upper left
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Fig. 3: Overview of our method. Given an input image that contains multiple
objects, our method can generate high-quality 3D assets through a two-stage process.
In the single-object reconstruction stage, we decompose every single object in the image
with object inpainting, and perform single-image reconstruction to create individual
3D models. In the multi-object combination stage, we maintain the geometry and
texture of each object while optimizing their scale, rotation, and translation parameters
{si, ri, ti}. This optimization process is guided by our proposed spatially-aware SDS
loss LSSDS, calculated on novel views, emphasizing the spatial token by enhancing its
attention map weight. For example, considering the prompt “A fox lying on a toolbox.”
given to the 2D diffusion model, we emphasize the spatial token “lying” by multiplying
its attention map with a constant c (c > 1). Also, we utilize the reference loss LRef ,
calculated on a reference view for additional constraints.

and bottom right corners. Given bounding boxes {bi ∈ Z4} for different objects,
we use SAM [20] to segment each object as follows:

Oi,Mi = SAM(I, bi), (1)

where Oi and Mi are the RGB channels and binary mask of i-th object.
Object Inpainting. To complete Oi that is possibly occluded by another object,
we utilize Stable Diffusion (SD) [43] for objects inpainting. However, we face the
challenge of not having a known mask to identify occluded regions. To address
this issue, we design a strategy for completing the occluded parts of objects.
First, to avoid generating a white or black border around the objects when
inpainting, we replace the background of image Oi with random noise, and the
noised image Ii is generated as follows:

Ii = Oi + noise ∗ (∼ Mi), (2)

where the ∼ Mi is the background region of Oi. The noised image Ii is illustrated
in Fig. 4. Second, the background region and bounding box bi are combined to
generate an inpainting mask mi for each object, which indicates the inpainting
region for each one. Specifically, for each inpainting mask mi, the pixels that
lie in the bounding box but outside the foreground object are set to 1, and the
others are set to 0. That is:

mi = (∼ Mi) ∩ bi, (3)
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Fig. 4: Objects decomposition and in-
painting. In this stage, given an input image,
we segment each separate object and get seg-
mented objects with noise background image
Ii and bounding-aware mask mi, then Ii and
mi are input to Stable Diffusion to obtain the
inpainted objects Îi.
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(a) Objects decomposition and inpainting
Fig. 5: 2D toy examples. We ran-
domly initialize the squirrel with two
different initial positions (left), and
optimize the position parameters to
match the prompt “a squirrel is sit-
ting on a box”. Compared to stan-
dard SDS, spatially-aware SDS pro-
duces better results.

where the ∼ Mi is the background region of i-th object Oi, and bi indicates its
bounding box. The mask mi is illustrated in Fig. 4. Finally, we input Ii and mi

that contain bounding box information to SD, to complete the object Ii inside
the bounding box bi: Îi = SD(Ii,mi), where Îi is the completed object, which is
illustrated in Fig. 4. For better completion, we input a text prompt “a complete
3D model” to SD when inpainting. After that, each inpainted object Îi can be
reconstructed by image-to-3D methods to produce single 3D models.

3.3 Multi-Object Combination

At this stage, we seek to combine separate 3D models by optimizing their scale,
rotation, and translation parameters {si, ri, ti}, such that they align with the
input image I and semantic spatial relationships. We begin by initializing each
object’s scale, rotation, and translation based on I, and then refine them using
the proposed spatially-aware diffusion priors and guidance from the reference
image. We will first introduce a spatially-aware diffusion distillation scheme,
followed by a discussion on its application for automatic object combinations.
Spatially-Aware Diffusion Guidance. DreamFusion [38] presents a method
that optimizes 3D representations from textual descriptions, by employing a
pre-trained 2D diffusion model. The subject is represented as a differentiable
parameterization [33], where a differentiable MLP renderer g renders 2D images
x = g(θ) from a neural radiance field parameterized as θ. It leverages a diffusion
model ϕ to provide a score function ϵ̂ϕ(xt; y, t), which predicts the sampled
noise ϵ given the noisy image xt, text-embedding y, and noise level t. This score
function guides the direction of the gradient for updating the neural parameters
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θ, and the gradient is calculated by Score Distillation Sampling (SDS):

▽θLSDS(ϕ, x) = Et,ϵ

[
w(t)(ϵ̂ϕ(xt; y, t)− ϵ)

∂x

∂θ

]
, (4)

while w(t) is a weighting function.
However, we find that SDS is unstable for position adjustment in our case. We

use a text prompt “a squirrel is sitting on a box” and an image of a squirrel and
a box as a toy example, and aim to test the ability of SDS to adjust the position
of the image elements according to the text prompt. As shown in Fig. 5, SDS
does not produce the correct placement, as the image content (squirrel and box)
already matches the prompt and SDS does not push the adjustment of position.
We thus propose spatially-aware SDS to emphasize the position adjustment when
calculating the gradient.

Recall that in SDS, for each text embedding y and time step t, we use a UNet
to predict the noise ϵ̂ϕ(xt; y, t). The features of noisy image ϕ(xt) are projected
to a query matrix Q = FQ(ϕ(xt)), and the textual embedding is projected to a
key matrix K = FK(y) and a value matrix V = FV (y), via the learned linear
projections FQ, FK and FV . The attention maps are then calculated by:

A = Softmax

(
QKT

√
d

)
, (5)

where the Aj indicates the attention map of j-th token, and d is the latent
projection dimension of the keys and queries.

To prioritize the refinement of spatial layout, we strengthen the key token
that describes the spatial relationship. The key token can be the word describing
spatial relationships, such as “front”, “on,” and “below,” or the word describing
object interaction, such as “riding” and “holding”, which can be extracted by
LLMs or indicated by the user. For example, consider the prompt “a squirrel is
sitting on a box”, we want to strengthen the effect of the word “sitting on”, which
describes the relationship between the squirrel and paper box. To achieve this
spatially-aware optimization, we scale the attention maps of the assigned tokens
j⋆ with a constant c (c > 1), similar to [14], resulting in a stronger focus on the
spatial relationship. The rest of the attention maps remain unchanged:

A :=

{
c ·Aj if j = j⋆

Aj otherwise.
(6)

The spatially-aware SDS loss (SSDS) can be formulated as:

▽θLSSDS(ϕ
⋆, x) = Et,ϵ

[
w(t)(ϵ̂ϕ⋆(xt; y, t)− ϵ)

∂x

∂θ

]
, (7)

where the ϵ̂ϕ⋆(xt; y, t) is the predicted noise calculated with the strengthened
attention maps which focus on the spatial words. For timesteps, we sample t
from a range with high noise levels, as these steps have a bigger impact on the
spatial layout of a generated image.
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Combine the objects. We begin with a coarse initialization of scale, rotation
and translation {si, ri, ti} from the bounding box bi and estimated depth di.
Specifically, the scale si is decided by the ratio of the bounding box size and
image size:

si = max

{
Wbi

WI
,
Hbi

HI

}
, (8)

where the Wbi , Hbi , WI , HI are the width and height of bounding box bi and
input image I respectively. As for translation ti, we use a monocular depth
prediction model [41] to estimate the average depth di for i-th object, which is
set as z-dimension in ti, and the x and y dimensions are initialized by the center
coordinates of bounding box bi and image size. That is:

ti = (Xbi − WI

2 , Ybi − HI

2 , di),
di = Average(Depth(Oi)),

(9)

where Xbi , Ybi are the center coordinates of bounding box bi, di is the aver-
age depth of each pixel that lie in i-th object Oi. The rotation angles in three
dimensions ri are initialized as (0, 0, 0).

However, due to depth-size ambiguity in a single-view image, the predicted
depth can be inaccurate, leading to an unreasonable initialization of depth
and size. To alleviate the single-view ambiguity, we refine spatial parameters
{si, ri, ti} with the proposed spatially-aware SDS loss (SSDS) as novel-view su-
pervision. To stabilize the optimization, we also constrain the reconstruction
error between reference-view rendering Î in and input image I:

LRef = λRGB

∣∣∣ÎRGB − IRGB

∣∣∣+ λA

∣∣∣ÎA − IA

∣∣∣ , (10)

where λRGB and λA are weights for RGB and alpha channels. The total loss is
a weighted summation of LRef and LSSDS.

4 Experiments

4.1 Implementation Details

We set the guidance scale to 7.5 and the number of inference steps to 30 when
inpainting the image with Stable Diffusion. We use Pytorch3D [42] as our dif-
ferentiable rendering engine. We randomly sample timestep t between 800 and
900. We use Adam as our optimizer, and the learning rate of translation on the z
dimension is 0.01, while the others are set to 0.001. The loss weight λRef , λSSDS,
λRGB, λA, are set to 1, 1, 1,000, 1,000 respectively. We set the multiplier c for
attention map to 25. We downsample each separate mesh to 50,000 faces in the
multi-object combination stage and render 10 views for each iteration. The SSDS
optimization takes approximately 2 minutes.
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SyncDreamerInput Wonder3DOpenLRM Ours

Fig. 6: Visual comparison for image-to-3D generation. Given an input image,
previous methods reconstruct inaccurate geometry and blurry texture, especially in
novel views. Our method produces higher-fidelity 3D models with the proposed com-
positional generation scheme.

Table 1: Quantitative comparison.

Method CLIP-Score ↑ GPT-3DScore ↑
SyncDreamer [28] 81.47% 13.54%
OpenLRM [17] 83.65% 53.12%
Wonder3D [30] 85.57% 56.25%
Ours 86.58% 65.63%

4.2 Main Results

Benchmark. To evaluate our method, we built a test benchmark containing
100 images covering a variety of complex 3D assets. The benchmark includes
50 images generated with stable diffusion, and 50 images constructed from real
images with PhotoShop. Each image has a foreground mask represented as the
alpha channel, a set of bounding boxes for objects, and a text caption. We use
GPT4 to propose text prompts and spatial tokens, followed by manual filtering.
We will make this benchmark publicly available.
Comparison Methods. We compare our method with three state-of-the-art
single-image reconstruction methods: 1) SyncDreamer [28], which we implement
using the official code. The textured meshes are derived from the NeuS [51]
representation. 2) LRM [17], which we implement using the publicly available
code [13]. 3) Wonder3D [30], which we implement using the official code and also
use as our base model for image-to-3D reconstruction.
Qualitative Comparison. As shown in Fig. 6, our method can accurately
reconstruct each object and preserve good spatial relationships among them.
Other methods often struggle to generate high-quality geometry and texture for
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“a small robot pushing a big ball”

Fig. 7: Qualitative results. ComboVerse can generate high-quality 3D models from a
single image that contains multiple objects.
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Fig. 8: Analysis for objects inpainting. We produce compelling inpainting results
with random background (EQ. 2), bounding-aware mask proposal (EQ. 3), and text
prompting. More analysis can be found in supplemental materials.

small objects in the input image, and the junction parts of different objects often
blend. More qualitative results are shown in Fig. 7.
Quantitative Comparison. We use CLIP-Score [40] to measure semantic sim-
ilarities between novel-view images and the reference image. We also involve
GPT-based evaluation following [58]. We conduct pair-wise comparisons for each
method across all samples, and report the probability of success for each method.
Table 1 shows that our method outperforms comparison methods in both seman-
tic similarity and GPT evaluation.

4.3 Ablation Study

Effectiveness of Object Inpainting. We performed a study to examine de-
signs in object completion. We first investigate the effect of noisy backgrounds
on object completion. When using a black or white background, the inpainting
model tends to generate a corresponding black or white border around the ob-
ject to ensure compatibility with the background, and the inpainted resuts were
not complete, as shown in the third column of Fig. 8. Then, we simply used
the background mask for inpainting instead of a bounding-aware mask, and the
inpainted results had extra parts, which caused inconsistency in the 3D recon-
struction with the input image. We also removed the text prompt “a complete
3D model” for diffusion models during inpainting, and the results also degraded.
Effectiveness of Spatially-Aware Diffusion Guidance. As shown in Fig. 9,
we use an example of "an astronaut is riding a red horse" to analyze different
guidance settings in object combination. Base only enforces reconstruction loss
in the reference view without additional guidance in novel views, and thus yields
incorrect relative depth between the astronaut and the horse. With a standard
SDS loss or depth loss from a depth prediction model as spatial guidance, the
interaction between the astronaut and the horse improves, but it was still far
from accurate. By strengthening the attention to the word “riding” with the
proposed SSDS loss (full), the full model achieves the best result. This confirms



ComboVerse 13

Depth LossInput SSDS 
(Full)

Base SDS SSDS
(Uniform Noise Range)

SSDS
(Low Noise Range)

Fig. 9: Analysis for objects combination. Compared with standard SDS and depth
constrain, SSDS provides stronger guidance on object positioning.

the improved spatial control capability of the proposed method over the standard
SDS. As discussed in Sec. 3.3, we sampled from a high noise range ([800, 900])
for Stable Diffusion when performing SSDS, as these steps have a bigger impact
on the spatial layout of a generated image. We also experiment with SSDS with
different sample ranges of noise timesteps, low noise range ([100, 200]), and
uniform noise range ([20, 980]) and observe a performance drop. We also give
quantitative ablation results in supplementary materials..

4.4 Application in Scene Reconstruction

Besides the generation of 3D assets with two objects, we also validate the gen-
eralization ability of the proposed method to multiple objects. As illustrated in
Fig. 10, we use the proposed method to reconstruct 3D scenes consisting of
multiple (> 2) objects. Previous methods that work on the object level have
difficulties in generating scenes and produce obvious artifacts in both geometry
and texture. Also, for small objects such as the dog in the last example, existing
methods tend to ignore it due to the training bias mentioned before. In contrast,
our method achieves realistic and high-quality reconstruction.

5 Conclusion

In this paper, we present ComboVerse, a novel method for creating high-quality
compositional 3D assets from a single image. With an in-depth analysis of the
“multi-object gap”, we build on object-level 3D generative models and extend
them to deal with more complex objects. With reconstructed 3D models of vari-
ous objects, we seek to adjust their sizes, rotation angles, and locations to create
a 3D asset that matches the given image. To this end, we proposed spatially-
aware score distillation sampling from pretrained diffusion models to guide the
placement of objects. Our approach can be a valuable step for complex 3D object
reconstruction and pave the way for future 3D scene generation.
Limitations. The proposed method performs well for assets consisting of two or
a few (usually < 5) objects. However, similar to existing text-based works, our
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Input Ours SyncDreamer OpenLRM Wonder3D

Fig. 10: Comparison of scene reconstruction. We show some challenging cases
that contain more than two objects. The first example involves four objects: a car, a
dinosaur, a tree, and a cone. The second example involves three examples: two robots
and a ball. The third example involves three examples: a house, a dog, and a tree. Our
method achieves compelling reconstruction quality with the compositional scheme.

method still faces challenges in creating very complex scenes with more objects.
Another limitation of our approach is the lack of optimization for the geometry
and texture in the combination process. Thus, the quality of the final results
relies on the performance of the image-to-3D method that we use as backbone.
We expect that our methods can be further enhanced with more robust backbone
methods in the future.
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